Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter.
نویسندگان
چکیده
Transcription from the human asparagine synthetase (A.S.) gene is increased in response to either amino acid (amino acid response) or glucose (endoplasmic reticulum stress response) deprivation. These two independent nutrient-sensing pathways converge on the same set of genomic cis -elements, referred to as nutrient sensing-response elements (NSREs) 1 and 2, within the A.S. promoter. The present report uses single-nucleotide mutagenesis to confirm that both NSRE-1 and NSRE-2 are absolutely required for gene activation and to identify the boundaries of each binding site. The core sequence of the NSRE-1 site is contained within nucleotides -68 to -60 and the NSRE-2 core sequence is within nucleotides -48 to -43. Through insertion or deletion of 5-10 nucleotides in the intervening sequence between NSRE-1 and NSRE-2, transient transfection studies with an A.S. promoter/reporter gene construct showed that the 11 bp distance between these two elements is critical. These results document that the optimal configuration is with both binding sites on the same side of the DNA helix, only one helical turn away from each other and the data provide support for the hypothesis that a larger multi-protein complex exists between the binding proteins for NSRE-1 and NSRE-2. The data also illustrate that the combination of NSRE-1 and NSRE-2, referred to as the nutrient-sensing response unit (NSRU), has enhancer activity in that it functions in an orientation- and position-independent manner, and conveys nutrient-dependent transcriptional control to a heterologous promoter.
منابع مشابه
CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene.
Transcription from the human asparagine synthetase (AS) gene is increased in response to either amino acid (amino acid response) or glucose (unfolded protein response) deprivation. These two independent pathways converge on the same set of genomic cis-elements within the AS promoter, which are referred to as nutrient-sensing response element (NSRE)-1 and -2, both of which are absolutely necessa...
متن کاملRole of Sp1 and Sp3 in the nutrient-regulated expression of the human asparagine synthetase gene.
The human asparagine synthetase (AS) gene responds to depletion of mammalian cells for either amino acids or carbohydrates. Five specific cis-elements have been implicated: three GC boxes (GC-I, GC-II and GC-III) and two nutrient-sensing response elements (NSRE-1, -2). This study shows that all three GC boxes are required to maintain basal transcription and to obtain maximal induction of the AS...
متن کاملDifferences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response.
A promoter element called the amino acid response element (AARE), which is essential for the induction of CHOP (a CCAAT/enhancer-binding protein-related gene) transcription by amino acid depletion, has been previously characterized. Conversely, the human asparagine synthetase (AS) promoter contains two cis-acting elements termed nutrient-sensing response elements (NSRE-1 and NSRE-2) that are re...
متن کاملTranscriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway.
The UPR (unfolded protein response) pathway comprises three signalling cascades mediated by the ER (endoplasmic reticulum) stress-sensor proteins PERK [PKR (double-stranded RNA-activated protein kinase)-like ER kinase], IRE1 (inositol-requiring kinase 1) and ATF6 (activating transcription factor 6). The present study shows that ASNS (asparagine synthetase) transcription activity was up-regulate...
متن کاملAsparagine synthetase: regulation by cell stress and involvement in tumor biology.
Asparagine synthetase (ASNS) catalyzes the conversion of aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction. The enzyme is ubiquitous in its organ distribution in mammals, but basal expression is relatively low in tissues other than the exocrine pancreas. Human ASNS activity is highly regulated in response to cell stress, primarily by increased transcription from a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 372 Pt 2 شماره
صفحات -
تاریخ انتشار 2003